Bioinformatics

Structural Bioinformatics

Assis. Prof. Dr. Labeed Al - Saad

The objectives

Structural Bioinformatics: Principles, Applications, and Future

What is Structural Bioinformatics?

Structural Bioinformatics: Integration of Biology and Computation

What is Structural Bioinformatics?

Structural Bioinformatics: Tools, Techniques, and Applications

Bioinformatics

Principles of structural bioinformatics

Structure Determination Methods in Biochemistry

Comparison of Methods

Method	Resolution	Sample State	Size Limit	Key Advantage
X-ray Crystallography	0.8–3.0 Å	Crystal	None	Atomic detail
Cryo-EM	2.5–4.0 Å	Solution (frozen)	>100 kDa	No crystallization needed
NMR	1.5–2.5 Å	Solution	<50 kDa	Captures dynamics
AlphaFold2	1–5 Å*	In silico	None	No experimental data required

Bioinformatics

Genetic Variants

Structural Bioinformatics in Personalized Medicine

Rare Disease Therapies

Key Technologies Enabling Personalized Medicine

Technology	Application	Example
AI Structure Prediction	Model patient-specific mutant proteins	AlphaFold2 for <i>TP53</i> mutations in cancer
Molecular Docking	Match drugs to mutant targets	Imatinib for <i>BCR-ABL1</i> mutants
Cryo-EM	Study patient-derived protein complexes	Immune receptor-antibody interactions
MD Simulations	Test drug binding kinetics	HIV protease inhibitor resistance

Challenges and Future Directions in Structural Bioinformatics

Dynamic Modeling

Dynamic modeling is crucial for high-impact structural predictions.

Challenges

Ethical Al

Ethical AI poses challenges with low immediate impact.

Low Impact

Interdisciplinary Collaboration Interdisciplinary collaboration enhances high-impact advancements in bioinformatics.

Future Directions

Improved Computational Methods

Improved computational methods promise future low-impact innovations.

Comprehensive Questions

- 1. Explain the principle of the "structure-function relationship" in biomolecules. Provide examples of how structural disruptions (e.g., misfolded proteins) lead to disease, and name tools used to visualize these relationships.
- 2. Compare X-ray crystallography, Cryo-EM, and NMR spectroscopy in terms of workflow, resolution, sample requirements, and limitations. Use specific examples (e.g., insulin, SARS-CoV-2 spike protein) to illustrate your answer.
- 3. Describe the steps involved in homology modeling and ab initio modeling. How do tools like SWISS-MODEL and AlphaFold2 differ in their approaches? What validation metrics ensure model accuracy?
- 4. How do molecular dynamics (MD) simulations and molecular docking contribute to drug discovery? Discuss software tools (e.g., GROMACS, AutoDock Vina) and applications like virtual screening.
- 5. What role do databases like CATH, SCOP, and PDB play in structural bioinformatics? Why is evolutionary conservation critical for predicting protein function?
- 6. Explain how structural bioinformatics enables personalized medicine. Use HER2-positive breast cancer (trastuzumab) and EGFR-mutant lung cancer (osimertinib) as case studies.

Comprehensive Questions

- 7. Discuss the challenges of validating computational models in structural bioinformatics. How do RMSD and Ramachandran plots address these challenges?
- 8. How does structural bioinformatics address drug resistance in diseases like leukemia? Include examples such as the BCR-ABL1 T315I mutation and the drug ponatinib.
- 9. Analyze the "Comparison of Methods" table from the PDF. How do resolution, sample state, and size limitations influence the choice between X-ray, Cryo-EM, NMR, and AlphaFold2?
- 10.What are the future challenges for structural bioinformatics? Discuss the roles of dynamic modeling, ethical AI, and interdisciplinary collaboration in advancing the field.

Dr. Labeed Al-Saad

Biology